UnzendakeSenD163

miaplpy_201901_202505/network_delaunay_4/pic

geo_velocity.png

geo_velocity.png

geo_temporalCoherence.png

geo_temporalCoherence.png

geo_temporalCoherence_lowpass_gaussian.png

geo_temporalCoherence_lowpass_gaussian.png

geo_maskTempCoh.png

geo_maskTempCoh.png

geo_maskTempCoh_lowpass_gaussian.png

geo_maskTempCoh_lowpass_gaussian.png

geo_maskPS.png

geo_maskPS.png

temporalCoherence.png

temporalCoherence.png

temporalCoherence_lowpass_gaussian.png

temporalCoherence_lowpass_gaussian.png

maskTempCoh.png

maskTempCoh.png

maskTempCoh_lowpass_gaussian.png

maskTempCoh_lowpass_gaussian.png

maskPS.png

maskPS.png

geo_avgSpatialCoh.png

geo_avgSpatialCoh.png

avgSpatialCoh.png

avgSpatialCoh.png

maskConnComp.png

maskConnComp.png

network.png

network.png

coherenceHistory.png

coherenceHistory.png

coherenceMatrix.png

coherenceMatrix.png

rms_timeseriesResidual_ramp.png

rms_timeseriesResidual_ramp.png

numTriNonzeroIntAmbiguity.png

numTriNonzeroIntAmbiguity.png

numInvIfgram.png

numInvIfgram.png

velocity.png

velocity.png

geometryRadar.png

geometryRadar.png

coherence_1.png

coherence_1.png

coherence_2.png

coherence_2.png

coherence_3.png

coherence_3.png

unwrapPhase_wrap_1.png

unwrapPhase_wrap_1.png

unwrapPhase_wrap_2.png

unwrapPhase_wrap_2.png

unwrapPhase_wrap_3.png

unwrapPhase_wrap_3.png

unwrapPhase_1.png

unwrapPhase_1.png

unwrapPhase_2.png

unwrapPhase_2.png

unwrapPhase_3.png

unwrapPhase_3.png

connectComponent_1.png

connectComponent_1.png

connectComponent_2.png

connectComponent_2.png

connectComponent_3.png

connectComponent_3.png

timeseries_demErr_wrap10_1.png

timeseries_demErr_wrap10_1.png

timeseries_demErr_wrap10_2.png

timeseries_demErr_wrap10_2.png

geo_timeseries_demErr_wrap10_1.png

geo_timeseries_demErr_wrap10_1.png

geo_timeseries_demErr_wrap10_2.png

geo_timeseries_demErr_wrap10_2.png

avgPhaseVelocity.png

avgPhaseVelocity.png

pbaseHistory.png

pbaseHistory.png

timeseries_wrap10_1.png

timeseries_wrap10_1.png

timeseries_wrap10_2.png

timeseries_wrap10_2.png

reference_date.txt

20190111

geo_velocity.kmz

Download file.

UnzendakeSenD163.template

######################################################
cleanopt                          = 0   # [ 0 / 1 / 2 / 3 / 4]   0,1: none 2: keep merged,geom_master,SLC 3: keep MINTPY 4: everything
processor                         = isce
ssaraopt.platform                 = SENTINEL-1  # [Sentinel-1 / ALOS2 / RADARSAT2 / TerraSAR-X / COSMO-Skymed]
ssaraopt.relativeOrbit            = 163
ssaraopt.startDate                = 20160601  # YYYYMMDD
ssaraopt.endDate                  = 20250506    # YYYYMMDD
hazard_products_flag              = False
#insarmaps_flag                     = True
######################################################
#topsStack.boundingBox             = 32.7167 32.8048 132.65 127.95    # -1 0.15 -91.6 -90.9
#topsStack.excludeDates            =  20240926
topsStack.subswath                = 2 3 # '1 2'
topsStack.numConnections          = 4    # comment
topsStack.azimuthLooks            = 3    # comment
topsStack.rangeLooks              = 15   # comment
topsStack.filtStrength            = 0.2  # comment
topsStack.unwMethod               = snaphu  # comment
topsStack.coregistration          = auto  # [NESD geometry], auto for NESD
#topsStack.referenceDate           = 20151220

######################################################
mintpy.load.autoPath              = yes
mintpy.subset.lalo                = 32.7167:32.8048,130.2242:130.3728
mintpy.compute.cluster            = local #[local / slurm / pbs / lsf / none], auto for none, cluster type
mintpy.compute.numWorker          = 30 #[int > 1 / all], auto for 4 (local) or 40 (non-local), num of workers
#mintpy.reference.lalo             = 32.7167,130.2242     # S of SN

mintpy.networkInversion.parallel  = yes  #[yes / no], auto for no, parallel processing using dask
mintpy.network.tempBaseMax        = auto  #[1-inf, no], auto for no, max temporal baseline in days
mintpy.network.perpBaseMax        = auto  #[1-inf, no], auto for no, max perpendicular spatial baseline in meter
mintpy.network.connNumMax         = auto  #[1-inf, no], auto for no, max number of neighbors for each acquisition
mintpy.network.coherenceBased     = auto  #[yes / no], auto for no, exclude interferograms with coherence < minCoherence
mintpy.network.aoiLALO            = auto  #[S:N,W:E / no], auto for no - use the whole area
mintpy.networkInversion.minTempCoh  = 0.6 #[0.0-1.0], auto for 0.7, min temporal coherence for mask

mintpy.troposphericDelay.method   = False   # pyaps  #[pyaps / height_correlation / base_trop_cor / no], auto for pyaps
mintpy.save.hdfEos5               = yes   #[yes / update / no], auto for no, save timeseries to UNAVCO InSAR Archive format
mintpy.save.hdfEos5.update        = yes   #[yes / no], auto for no, put XXXXXXXX as endDate in output filename
mintpy.save.hdfEos5.subset        = yes   #[yes / no], auto for no, put subset range info in output filename
mintpy.save.kmz                   = yes   #[yes / no], auto for yes, save geocoded velocity to Google Earth KMZ file
####################
minsar.miaplpyDir.addition         = date  #[name / lalo / no] auto for no (miaply_$name_startDate_endDate))
miaplpy.subset.lalo                = 32.7167:32.8048,130.2242:130.3728  #[S:N,W:E / no], auto for no
miaplpy.load.startDate             = auto # 20200101
miaplpy.load.endDate               = auto
mintpy.geocode.laloStep            = 0.0002,0.00024
mintpy.reference.minCoherence      = 0.5      #[0.0-1.0], auto for 0.85, minimum coherence for auto method
miaplpy.interferograms.delaunayBaselineRatio = 4
miaplpy.interferograms.delaunayTempThresh    = 120     # [days] temporal threshold for delaunay triangles, auto for 120
miaplpy.interferograms.delaunayPerpThresh    = 200     # [meters] Perp baseline threshold for delaunay triangles, auto for 200
miaplpy.interferograms.networkType           = single_reference # network
miaplpy.interferograms.networkType           = delaunay # network
#############################################
miaplpy.load.processor            = isce
miaplpy.multiprocessing.numProcessor = 40
miaplpy.inversion.rangeWindow     = 24   # range window size for searching SHPs, auto for 15
miaplpy.inversion.azimuthWindow   = 7    # azimuth window size for searching SHPs, auto for 15
miaplpy.timeseries.tempCohType    = full     # [full, average], auto for full.
miaplpy.timeseries.minTempCoh     = 0.50     # auto for 0.5
mintpy.networkInversion.minTempCoh = 0.7
#############################################
minsar.upload_flag                = False    # [True / False ], upload to jetstream (Default: False)
minsar.insarmaps_flag             = False
minsar.insarmaps_dataset          = filt*DS
#############################################