EtnaSenA44
mintpy/pic
geo_velocity.png

geo_temporalCoherence.png

geo_maskTempCoh.png

temporalCoherence.png

maskTempCoh.png

geo_avgSpatialCoh.png

avgSpatialCoh.png

maskConnComp.png

network.png

coherenceHistory.png

coherenceMatrix.png

rms_timeseriesResidual_ramp.png

numTriNonzeroIntAmbiguity.png

numInvIfgram.png

velocity.png

geometryRadar.png

coherence_1.png

coherence_2.png

coherence_3.png

coherence_4.png

coherence_5.png

coherence_6.png

coherence_7.png

coherence_8.png

coherence_9.png

coherence_10.png

coherence_11.png

coherence_12.png

coherence_13.png

unwrapPhase_wrap_1.png

unwrapPhase_wrap_2.png

unwrapPhase_wrap_3.png

unwrapPhase_wrap_4.png

unwrapPhase_wrap_5.png

unwrapPhase_wrap_6.png

unwrapPhase_wrap_7.png

unwrapPhase_wrap_8.png

unwrapPhase_wrap_9.png

unwrapPhase_wrap_10.png

unwrapPhase_wrap_11.png

unwrapPhase_wrap_12.png

unwrapPhase_wrap_13.png

unwrapPhase_1.png

unwrapPhase_2.png

unwrapPhase_3.png

unwrapPhase_4.png

unwrapPhase_5.png

unwrapPhase_6.png

unwrapPhase_7.png

unwrapPhase_8.png

unwrapPhase_9.png

unwrapPhase_10.png

unwrapPhase_11.png

unwrapPhase_12.png

unwrapPhase_13.png

connectComponent_1.png

connectComponent_2.png

connectComponent_3.png

connectComponent_4.png

connectComponent_5.png

connectComponent_6.png

connectComponent_7.png

connectComponent_8.png

connectComponent_9.png

connectComponent_10.png

connectComponent_11.png

connectComponent_12.png

connectComponent_13.png

timeseries_ERA5_demErr_wrap10_1.png

timeseries_ERA5_demErr_wrap10_2.png

timeseries_ERA5_demErr_wrap10_3.png

timeseries_ERA5_demErr_wrap10_4.png

timeseries_ERA5_wrap10_1.png

timeseries_ERA5_wrap10_2.png

timeseries_ERA5_wrap10_3.png

timeseries_ERA5_wrap10_4.png

geo_timeseries_ERA5_demErr_wrap10_1.png

geo_timeseries_ERA5_demErr_wrap10_2.png

geo_timeseries_ERA5_demErr_wrap10_3.png

geo_timeseries_ERA5_demErr_wrap10_4.png

avgPhaseVelocity.png

pbaseHistory.png

timeseries_wrap10_1.png

timeseries_wrap10_2.png

timeseries_wrap10_3.png

timeseries_wrap10_4.png

velocityERA5.png

reference_date.txt
20240206
geo_velocity.kmz
Download file.
EtnaSenA44.template
######################################################
ssaraopt.platform = SENTINEL-1 # [Sentinel-1 / ALOS2 / RADARSAT2 / TerraSAR-X / COSMO-Skymed]
ssaraopt.relativeOrbit = 44
ssaraopt.startDate = 20140701 # YYYYMMDD
######################################################
topsStack.subswath = 1 2 3 # '1 2'
topsStack.numConnections = 4 # comment
topsStack.azimuthLooks = 5 # comment
topsStack.rangeLooks = 20 # comment
topsStack.filtStrength = 0.2 # comment
topsStack.unwMethod = snaphu # comment
topsStack.coregistration = auto # [NESD geometry], auto for NESD
#topsStack.excludeDates = 20240926
######################################################
mintpy.load.autoPath = yes
mintpy.compute.cluster = local #[local / slurm / pbs / lsf / none], auto for none, cluster type
mintpy.compute.numWorker = 40 #[int > 1 / all], auto for 4 (local) or 40 (non-local), num of workers
mintpy.plot.maxMemory = 180 #[float], auto for 4, max memory used by one call of view.py for plotting.
mintpy.networkInversion.parallel = yes #[yes / no], auto for no, parallel processing using dask
mintpy.save.hdfEos5 = yes #[yes / update / no], auto for no, save timeseries to UNAVCO InSAR Archive format
mintpy.save.hdfEos5.update = yes #[yes / no], auto for no, put XXXXXXXX as endDate in output filename
mintpy.save.hdfEos5.subset = yes #[yes / no], auto for no, put subset range info in output filename
mintpy.save.kmz = yes #[yes / no], auto for yes, save geocoded velocity to Google Earth KMZ file
mintpy.reference.minCoherence = auto #[0.0-1.0], auto for 0.85, minimum coherence for auto method
mintpy.troposphericDelay.method = auto # pyaps #[pyaps / height_correlation / base_trop_cor / no], auto for pyaps
mintpy.networkInversion.minTempCoh = 0.6 #[0.0-1.0], auto for 0.7, min temporal coherence for mask
######################################################
miaplpy.load.processor = isce
miaplpy.multiprocessing.numProcessor = 40
miaplpy.inversion.rangeWindow = 24 # range window size for searching SHPs, auto for 15
miaplpy.inversion.azimuthWindow = 7 # azimuth window size for searching SHPs, auto for 15
miaplpy.timeseries.tempCohType = full # [full, average], auto for full.
miaplpy.interferograms.networkType = delaunay # network
miaplpy.unwrap.snaphu.tileNumPixels = 10000000000 # number of pixels in a tile, auto for 10000000
######################################################
minsar.miaplpyDir.addition = date #[name / lalo / no] auto for no (miaply_$name_startDate_endDate))
mintpy.subset.lalo = 37.489:37.905,14.747:15.266 #[S:N,W:E / no], auto for no
miaplpy.subset.lalo = 37.525:37.825,15.050:15.210 #[S:N,W:E / no], auto for no
miaplpy.load.startDate = auto # 20200101
miaplpy.load.endDate = auto
mintpy.geocode.laloStep = 0.0008,0.0008
#mintpy.geocode.laloStep = 0.00013474667624865252,0.00014
miaplpy.timeseries.minTempCoh = 0.75 # auto for 0.5
mintpy.networkInversion.minTempCoh = 0.75
######################################################
minsar.insarmaps_flag = True
minsar.upload_flag = True
minsar.insarmaps_dataset = filt*DS